\[\sum_{i=0}^{N_\Phi}\Phi_i= 1 \rightarrow \left (\sum_{i=0}^{N_\Phi}\Phi_i \right )^2=1\]
\[\left (\sum_{i=0}^{N_\Phi}\Phi_i \right )^2=\Phi_0^2+\Phi_1^2+...+\Phi_{N_\Phi}^2+\Phi_0\Phi_1+\Phi_0\Phi_2+...+\Phi_{N_\Phi}\Phi_{N_{\Phi-1}}\]
\[\left (\sum_{i=0}^{N_\Phi}\Phi_i \right )^2= \sum_{i=0}^{N_\Phi}\Phi_i^2 +\sum_{i,j=0 \:i\neq j}^{N_\Phi}\Phi_i\Phi_j =1\]
\[\sum_{i=0}^{N_\Phi}\Phi_i=1\]
\[-\sum_{i,j=0 \:i\neq j}^{N_\Phi}\Phi_i\Phi_j=\sum_{i=0}^{N_\Phi}\Phi_i^2 -1=\sum_{i=0}^{N_\Phi}\Phi_i^2 -\sum_{i=0}^{N_\Phi}\Phi_i=\sum_{i=0}^{N_\Phi}(\Phi_i^2-\Phi_i)\]
\[\Phi_i^2-\Phi_i\cong \Phi_iln\Phi_i \:\:\: for\: \Phi_i\leq 1\]
\[-\sum_{i,j=0 \:i\neq j}^{N_\Phi}\Phi_i\Phi_j \cong \sum_{i=0}^{N_\Phi}\Phi_iln\Phi_i\]
\[S =- \sum_{i=0}^{N_\Phi}\Phi_iln\Phi_i\]